Mechanical strength of nanoporous graphene as a desalination membrane.

نویسندگان

  • David Cohen-Tanugi
  • Jeffrey C Grossman
چکیده

Recent advances in the development of nanoporous graphene (NPG) hold promise for the future of water supply by reverse osmosis (RO) desalination. But while previous studies have highlighted the potential of NPG as an RO membrane, there is less understanding as to whether NPG is strong enough to maintain its mechanical integrity under the high hydraulic pressures inherent to the RO desalination process. Here, we show that an NPG membrane can maintain its mechanical integrity in RO but that the choice of substrate for graphene is critical to this performance. Using molecular dynamics simulations and continuum fracture mechanics, we show that an appropriate substrate with openings smaller than 1 μm would allow NPG to withstand pressures exceeding 57 MPa (570 bar) or ten times more than typical pressures for seawater RO. Furthermore, we demonstrate that NPG membranes exhibit an unusual mechanical behavior in which greater porosity may help the membrane withstand even higher pressures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cost effective synthesis and characterization of nanoporous graphene oxide membrane

Nanoporous grapheme-based materials have been widely recognized as an emerging and promising membrane material or selective layer of membranes to be used in separation [1] and purification applications [2, 3]. For instance, a pioneered modeling work reported by Cohen-Tanugi and Grossman [4, 5] shows that a graphene sheet with subnanometer pores can provide superior water transport rate and high...

متن کامل

Multilayer Nanoporous Graphene Membranes for Water Desalination.

While single-layer nanoporous graphene (NPG) has shown promise as a reverse osmosis (RO) desalination membrane, multilayer graphene membranes can be synthesized more economically than the single-layer material. In this work, we build upon the knowledge gained to date toward single-layer graphene to explore how multilayer NPG might serve as a RO membrane in water desalination using classical mol...

متن کامل

Tunable C2N Membrane for High Efficient Water Desalination

Water scarcity represents one of the most serious global problems of our time and challenges the advancements in desalination techniques. Although water-filtering architectures based on graphene have greatly advanced the approach to high performance desalination membranes, the controlled-generation of nanopores with particular diameter is tricky and has stunted its wide applications. Here, thro...

متن کامل

A Novel Nanofiltration Membrane Prepared with PAMAM and Graphene oxide for Desalination

Nanofiltration is increasingly gaining attention in many separation and treatment processes such as water softening, color removal and separation of medicines. Nanofiltration membranes are often negatively charged, displaying separation characteristics in the intermediate range between reverse osmosis and ultrafiltration. In this research, a novel nanofiltration membrane prepared with poly(amid...

متن کامل

Water permeability of nanoporous graphene at realistic pressures for reverse osmosis desalination.

Nanoporous graphene (NPG) shows tremendous promise as an ultra-permeable membrane for water desalination thanks to its atomic thickness and precise sieving properties. However, a significant gap exists in the literature between the ideal conditions assumed for NPG desalination and the physical environment inherent to reverse osmosis (RO) systems. In particular, the water permeability of NPG has...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nano letters

دوره 14 11  شماره 

صفحات  -

تاریخ انتشار 2014